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Spectra of conic carbon radicals
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Conic carbon radicals with non-trivial automorphism groups are topologically
possible when the curvature originates from 1, 3 or 5 pentagons in the otherwise hex-
agonal graphene sheet. By splitting determinants of quotient graphs, we determine the
bonding nature of the last occupied and first unoccupied Hückel orbitals of the radicals
constituting the three infinite series with the most plausible topologies. Each member of
the series with three pentagons at the tip has one electron in the first anti-bonding orbi-
tal, each member of the series with one or five pentagons at the tip has one vacancy
in the last bonding orbital, and none of the radicals have any un-bonding orbital.
Within the limits of the Hückel model, this implies, respectively, stable conic cations
and anions. The quotient graphs also give the collected Hückel energy for each of the
one-dimensional irreducible representations of the point groups.
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1. Introduction

Much of current theoretical nano-science is about the electronic properties
of new, and – at least from a chemist’s point of view – large molecular structures.
Further tools for extracting essential spectral information from entire classes of
molecules are therefore needed. In the case of sp2-hybridized carbon networks,
with the Hückel model [1] as a common point of departure, it is exciting to
explore topologies where the methods of spectral graph theory can spare us from
downright solution of the secular equation. The vast majority of results achieved
along this line have been for molecules with bipartite graphs, i.e. graphs with
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only even circuits and consequently symmetric spectra, which tremendously sim-
plifies the search for closed-shell topologies. The well-known fullerenes, on the
other hand, are not bipartite, and it was a notable achievement to prove the fact
that all the leapfrog fullerenes [2] have properly closed Hückel shells [3]. However,
the fullerenes and most bipartite molecules have in common that they are conju-
gated systems; far less graph theoretical results have been achieved for radicals.
Due to their symmetric spectra, bipartite radicals necessarily have at least one
electron in an un-bonding Hückel orbital, and are thus of secondary chemical
interest. For the remaining radicals we are not aware of any spectral predictions
of comparable range to those achieved for conjugated systems. In this work, we
find the number of negative and positive eigenvalues in the Hückel spectra for
the three classes of conic carbon radicals that are most likely to be synthesized,
but we cannot claim to offer a general method for extracting such information
without solving the secular equation. This restriction is due to our application of
prior knowledge particular to certain induced subgraphs of the investigated sys-
tems. However, the series of radicals with the lowest symmetry demands some
ideas that may prove useful outside the context of this work.

The network and geometry of a carbon nanocone can be constructed by
cutting 1–5 sectors of 60◦ disclination angle from a flat graphene sheet and join-
ing the resulting dangling bonds. The new sheet will then have a curvature deter-
mined by the number of pentagons at the tip. According to Euler’s rule, cones
with other facial combinations than pentagons and hexagons are topologically
possible, but are considered less likely to exist due to enhanced bond stress at the
non-hexagonal faces. This construction should not be understood as a model of
the synthesis; there is computational evidence [4] that the energy cost of curva-
ture is negligible in comparison with the energy of the dangling bonds of a grow-
ing graphene sheet, so the current view is that the pentagons are introduced at
en early stage of the nucleation process. The first observation of fullerene cones
and open-ended carbon nanocones were reported in 1994 [5], and 3 years later
a method for synthesizing large quantities of mesoscopic open-ended cones with
all the five possible apex angles were discovered by accident [6]. The latter pro-
cess [7] starts with heavy oil, and the deliberated hydrogen is directed back to the
reactor vessel during the operational cycle. The cones should therefore be termi-
nated by hydrogens, and thus amenable to the molecular orbital theory of con-
jugated systems.

Our interest in the associated radicals stems from the fact that they can
appear as neutral molecules with the same topological symmetry as conjugated
cones with the same apex angles, although the geometrical symmetry will be
broken by the Jahn–Teller effect if the last occupied orbital is degenerate. This
preservation of symmetry is possible only for conic graphene sheets where the
curvature originates from 1, 3, or 5 pentagons, and is thus a distinguished fea-
ture of the nanocones. Carbon nanotubes, the more renowned relatives, are
either open-ended or capped with a hemisphere containing six pentagons, and
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the radical tubes must therefore be charged if the rotational symmetry shall be
preserved. The conic radicals may be stabilized by adding or removing electrons,
provided the resulting anions or cations are closed-shell systems. These associ-
ated anions or cations may play a role in the extraordinary hydrogen storage
capacity observed for crude samples of this material [8]. In addition, the size
span of the cones make the radicals potentially interesting as spin probes in bio-
medical applications (see the recent review [9] on carbon nanocones for more
details and emerging technological applications).

2. Hückel levels and molecular graphs

The σ -bonds connecting the n carbon atoms in a sp2-hybridized network
defines a graph G, and the corresponding adjacency matrix A(G) commutes with
the Hückel matrix; the bonds between carbons and terminating hydrogens are
not relevant to the Hückel theory of the π -orbitals. It is customary to index the
eigenvalues of the adjacency matrix in non-increasing order

θ1(A(G)) � θ2(A(G)) · · · � θn(A(G)) (1)

such that the Hückel energy of the ith π -orbital,

Ei (G) = α + β · θi (A(G)), (2)

is bonding, anti-bonding or un-bonding if θi (A(G)), is respectively, larger, smaller
than or equal to zero, as α and β are both negative constants [10]. Also for the
curved graphene surfaces of fullerenes and tubes has this highly simplified model
of the π -orbitals been found to work remarkably well in that essential part of the
spectrum where the energies change sign [11–13]. Figure 1 shows the molecular
graphs of the first three members of the radical series with a single pentagon at
the tip. Three graphs are sufficient to deduce that a radical with r stacked carbon
rings, including the central pentagon, has the chemical formula C5r2H5r , where the

Figure 1. The molecular graphs of the first three members of the infinite series of conic carbon
radicals with a single pentagon at the tip.
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number of terminating hydrogens equals the number of 2-valent vertices along the
edge of the graph.

For radicals with three or five pentagons at the tip, one can imagine many
possible tip topologies. However, in a previous work [14] we proved that all con-
jugated carbon cones with the pentagons configured as in a Fries Kekulé struc-
ture and with each edge of the molecular graph in a hexagon, satisfy

θn/2(A(G)) > 0 > θn/2+1(A(G)), (3)

the condition for properly closed Hückel shells. If the pentagons of the other-
wise hexagonal network are placed as close as possible without being adjacent,
the configuration is consistent with a Fries Kekulé structure, the tightest one.
The local cusps that would result from a larger separation of the pentagons are
mechanically unfavorable, and, on the other hand, breaking the so-called isolated
pentagon rule [15] is theoretically unfavorable from several points of view [16–
21]. So, there is abundant support for the tightest possible non-adjacent config-
uration of the pentagons at the cone tips. The nucleation puzzle is largely in the
dark [6,22,23], but we expect the radicals to grow from the same seeds as the
conjugated cones. If this assumption is wrong, the radicals can be still produced
by etching carbon rings off the cones. Therefore, between the topologically pos-
sible radicals with three or five pentagons at the tips, we choose those with the
tightest non-adjacent configurations of the pentagons.

The first three members of the chosen infinite series of radicals with three
pentagons at the tip are shown in figure 2. A member of this series has the chem-
ical formula C3(r2+2r−1)H3(r+1), where r is the number of stacked carbon rings,
including the central hexagon. The radicals with the tightest non-adjacent con-
figuration of five pentagons at the tips, represented in figure 3, cannot entirely be
decomposed into rings, so in their chemical formula, C

(r2+20r+40)
H(r+10), r refers

to the number of concentric rings around the conjugated “core tip”, obtained
by removing the outer ring of the first member of this series. Also for the other
two series, the chemical formulas hold for the conjugated cones resulting from

Figure 2. The molecular graphs of the first three members of the infinite series of conic carbon
radicals with three pentagons at the tips.
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Figure 3. The molecular graphs of the first three members of the infinite series of conic carbon
radicals with five pentagons at the tips.

removal of the outer carbon rings, a fact that will be applied at several occasions
in the following.

3. Spectral information from determinants

To establish a preliminary bound on the numbers of negative and positive
eigenvalues of the radicals, we apply the Interlacing Theorem (see, e.g. [24–26]):

Theorem 1. Let A be a real symmetric n × n matrix and let B be a principal
submatrix of A with order m × m. Then, for i = 1, . . . , m,

θi (A) � θi (B) � θi+n−m(A).

Notice that at the outer ring of each radical graph G there is one 2-valent
vertex lying in each of the reflection planes. If one of these vertices are deleted,
we are left with a molecular graph satisfying (3), according to our previous work.
Theorem 1 then gives for the radicals

θ(n−1)/2(A(G)) > 0 > θ(n+3)/2(A(G)), (4)

which means that a radical belonging to one of the three series has an adjacency
matrix with at most (n + 1)/2 positive or negative eigenvalues. From elementary
matrix theory we have

det A(G) =
n∏

i=1

θi (A(G)), (5)

which, in conjunction with (3), (4) and the chemical formulas from the last
paragraph of the previous section, implies
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(a) For all three series of radicals, θ(n+1)/2(A(G)) � 0 iff det A(G) � 0.

(b) Removal of the outer ring of carbon atoms from a radical with one or
five pentagons at the tip gives a conjugated cone with positive determi-
nant, while the same operation gives a conjugated cone with negative
determinant for a radical with three pentagons at the tip.

The transition to determinants relates the critical questions to the simple ei-
genvalues of the adjacency matrices, as the degenerate eigenvalues of the fivefold
and threefold symmetric radicals with, respectively, one or three pentagons at the
tips do no contribute to the sign of the determinants. In addition, θ(n+1)/2(A(G))

must be a simple eigenvalue if it equals zero, according to (4). From the graph
G of each three- or fivefold symmetric cone or radical we can extract a quotient
graph, which spectrum consists of the simple eigenvalues of A(G). In the next
sections, we will show how these graphs looks, and how to take advantage of
point (b) above. The radicals with five pentagons at the tip demand some addi-
tional ideas, and will therefore be treated separately.

4. Equitable partitions and quotient graphs

At this point it will be necessary to distinguish between the edges of undi-
rected graphs and the arcs of directed graphs. All molecular graphs of the type
shown in figures 1–3 are examples of undirected graphs; their edges have no
directions. If each edge of an undirected graph is replaced by two arcs (directed
edges) pointing in opposite directions, we obtain a directed graph with the same
adjacency matrix as the undirected graph. Unless a graph is referred to as a
digraph, it is by consensus an undirected graph.

A graph G has an equitable partition X of its n vertices into m cells if each
vertex in cell j has the same numbers of arcs to a vertex in cell k for j, k =
1, 2, . . . , m. This is also called a D-feasible m-coloration of the vertices, and the
orbits of any automorphism of G clearly forms an equitable partition X . Any
partition can be represented by a n × m matrix P , where each column is a char-
acteristic vector projecting on the vertices filling the corresponding cell. If X is
equitable, it follows that (see, e.g., [26])

A(G)P = P A(G/X), (6)

where A(G/X) is the adjacency matrix of the quotient graph G/X representing
the arcs between the m cells of X . If A(G/X)v = θ(A(G/X))v, then (6) implies
that θ(A(G/X)) is an eigenvalue of A(G), with corresponding eigenvector u = Pv.
Since (6) further implies that the column space of P is A(G)-invariant, u is con-
stant on vertices belonging to the same cell of X . By orthogonality, any eigen-
vector of A(G), which is not constant on the cells of X , must then sum to zero
on each cell of X . There is an apparent relationship between this approach and
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Figure 4. The undirected graph G/X , which is co-spectral to the quotient graph G/X , where the cells
of X are the orbits of the C5 operation on G. A major fraction of the orbits in G and the corre-

sponding vertices in G/X are labeled in order to clarify the relationship.

the block-diagonalization of A(G) into irreducible representations of the (point)
group of automorphisms. The features we shall benefit from in this work, how-
ever, would be completely masked in a matrix representation.

Since the fivefold symmetric radicals with a single pentagon at the tip have
the simplest topology, we start by extracting from one of these the quotient
graph G/X , which spectrum consists of the simple eigenvalues of the molecular
graph G. The cells of X must hence be the orbits of the subgroup C5, since only
the eigenvectors of A(G) that transform in accordance with the one-dimensional
irreducible representations of the full automorphism group can be constant on
these cells. It has no consequence that the graph has a larger group (D5h) than
the molecule it represents (C5v), since reflections through the paper plane do
not effect additional equitable partitions. When it comes to assigning symme-
try labels to eigenvalues, we will therefore use the irreducible representations of
the molecular point group. When only the spectra are of interest, the quotient
graphs can frequently be replaced simpler, co-spectral graphs, and in figure 4,
we have exploited the facts that the direction of a loop has no meaning, and, as
mentioned, two arcs in opposite directions are equivalent to an undirected edge.
The shown graph G/X is co-spectral with the G/X , where the cells of X are the
orbits of the C5 operation on the molecular graph G of a radical with 125 car-
bons. Notice that the number of horizontal edges in G/X equals r−1, the number
of concentric rings around the central pentagon in G.

5. The coefficients theorem

Recapitulating section 3, we now have that θ(n+1)/2(A(G)) � 0 iff det
A(G/X) � 0, and in the following we will use invariant properties of G/X to show
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that sgn det A(G/X) is the same for all members of the series of radicals with a
single pentagon at the tip. For this purpose we make use of what is called the
Coefficients Theorem [27–30] for the characteristic polynomial

Φ(θ) = det(θ I − A) = θm + a1θ
m−1 + · · · + am (7)

for a (di)graph on m > 1 vertices with adjacency matrix A. This important
theorem gives expressions for each of the coefficients a1, a2, . . . , am and was orig-
inally formulated for digraphs. For a full treatment including the history of the
theorem, see [24]. Here we only quote the results we need. When the character-
istic polynomial is written in the present form, det A = (−1)mam , and the coeffi-
cients theorem gives for an undirected graph:

am =
∑

U∈U
(−1)p(U ) · 2c(U ), (8)

where U is the set of all spanning “basic figures” of the graph; each figure U ∈ U
is composed of p(U ) “elementary figures” in the graph, namely disjoint edges
and circuits, and c(U ) is the number of circuits, including loops, in U . The deter-
minant of any odd-numbered circuit except the loop thus equals 2.

If we now try to decompose G/X of figure 4 in accordance with this scheme,
we see that its longest horizontal edge must be contained in every spanning basic
figure. This inverse analogy to the problem of the bridges of Koenigsberg origi-
nates from the mapping of the concentric odd-numbered circuits of G to stacked
odd-numbered circuits in G/X ; if this particular edge in the mapping of the out-
ermost circuit is removed, there is no disjoint set of elementary figures contain-
ing all vertices of G/X . We can now apply (8) and split the determinant;

det A(G/X) = 2 det A(G ′/X ′) − det A(G ′′/X ′′), (9)

where G ′/X ′ and G ′′/X ′′ are pointed out with arrows in figure 5, and the some-
what awkward notation will be justified in a moment.

If we remove the outermost concentric ring of G and partition the ver-
tices into the orbits of C5, the quotient graph will be co-spectral to G ′/X ′.

Figure 5. Decomposition of G/X from figure 4 in terms of spanning basic figures.
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Thus det A(G ′/X ′) has the same sign as the determinant of a conjugated fivefold
symmetric cone which, according to point (b) in section 3 is positive. The chal-
lenge is G ′′/X ′′, which is co-spectral to the quotient graph of a new fivefold sym-
metric radical with molecular graph G ′′. Both G/X and G ′′/X ′′ have a σv-plane
normal to the horizontal edges and the paper, and their determinants can be fac-
torized into eigenvalues of A1 and A2 eigenvectors of G and G ′′;

det A(G/X) = det A(G/X A1) ·
∏

j

θ j (A2)(A(G)) (10)

and

det A(G ′′/X ′′) = det A(G ′′/X ′′
A1) ·

∏

j

θ j (A2)(A(G ′′)), (11)

where θ j (A2) refers to an eigenvalue with corresponding A2 eigenvector, and only
the A1 eigenvectors of G and G ′′ are constant on the cells of X A1 and X ′′

A1. As
shown in figure 6, the quotient graphs G/X A1 and G ′′/X ′′

A1 can also be obtained
by partitioning the vertices of G/X and G ′′/X ′′ into the orbits of their only non-
trivial automorphism, which is reflection through the σv-plane. Due to graphical
limitations, figure 6 must be read with the following filter: each pair of oppo-
sitely directed arcs in G/X A1 is represented by a simple undirected edge, and the
drawn double edges indicate presence of an additional unpaired arc.

Now we need the digraph version of the Coefficients Theorem, which states
that the last coefficient of (7) is given by

am =
∑

L∈L
(−1)p(L), (12)

Figure 6. G/X A1 as quotient graph of G/X . The labeled orbits of the σv reflection are the vertices
of G/X A1.



716 H. Heiberg-Andersen and A.T. Skjeltorp / Spectra of conic carbon radicals

where L is the set of all spanning linear directed subgraphs L of the digraph,
and p(L) is the number of components in L. In a linear directed graph, each
vertex has one in-degree and one out-degree, so each L ∈ L is a decomposition
of the digraph into a disjoint set of cycles, loops, and vertex pairs connected by
two oppositely directed arcs. We then see from figure 6 that

det A(G/X A1) = det A(G ′′/X ′′
A1) (13)

since the particular edge that had to be included in every spanning basic figure
of G/X is transformed into a loop on the last vertex of G/X A1: deleting this ver-
tex, which, together with its loop, must be a component of any spanning basic
figure of G/X A1, gives G ′′/X ′′

A1, and the claim (13) follows. This necessity, origi-
nating from the fact that the bounding circuit of the molecular graph contains
an odd number of vertices, is thus a property shared by all radicals in this series.

6. Class A bipartite subgraphs

The eigenvectors that sum to zero on the orbits of reflection through the
σv-planes of G/X and G ′′/X ′′, have eigenvalues belonging to the A2 vectors of G
and G ′′. These eigenvalues are thus contained in the spectra of the graphs H̃ and
H̃ ′′, obtained by deleting the vertices lying in the σv-planes, since each of these
vertices constitutes an orbit of the reflection, on which the corresponding eigen-
vectors of G/X and G ′′/X ′′ must sum to zero. As shown in figure 7, H̃ and H̃ ′′
are isomorphic to the bipartite plane graphs H and H ′′, which are identified as
induced subgraphs of G and G ′′. Moreover, H and H ′′ belong to the class A
graphs [31], defined by Cvetković et al., as all connected bipartite plane graphs
in which every face-boundary is a circuit of length 4s +2, where s is any positive
integer. (Relations between this class of graphs and Hückel’s 4n + 2 rule are not
relevant to the present problem.) To realize that this holds for all radicals of this
series, notice that the outer faces, i.e. the boundaries, of H and H ′′ will always
have the same length, since the two extra vertices of H will always be connected
by the lowest horizontal edge in the lowest hexagon. Apart from the upper and
lowest horizontal edge, which are the only edges of the outer faces that are cut
by the σv-plane, the outer faces of H and H ′′ have 2 · 8 edges for the present rad-
ical, and the corresponding bipartite graphs derived from other radicals in this
series are obtained by symmetric expansion of the hexagonal lattice. Each new
hexagon adds four and subtracts two edges from the outer faces, so the number
of boundary edges that are not cut by the σv-plane will always be two times an
even number, and the 4s + 2 length of the outer face is preserved.

A 1-factor of a graph, often called just a factor, is a regular spanning sub-
graph in which each vertex has degree 1, and for a class A graph there is a spe-
cial relation between the number of factors and the determinant of the adjacency
matrix. It is seen that a factor is the same as a perfect matching. The vertices of
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Figure 7. The subgraphs H̃ and H̃ ′′ of G/X and G′′/X ′′ shown together with their isomorphic class
A graphs H and H ′′.

an even-numbered bipartite graph can be separated into two color sets of ν ver-
tices, such that each edge of the graph connects two vertices of different color. If
the graph additionally belongs to class A, and has k different perfect matchings,
we have the following theorem:

Theorem 2. Let H be a bipartite graph with ν + ν vertices and adjacency matrix
A, belonging to class A. Then

det A = (−1)ν · k2. (14)

The full version of this theorem, given in [24], contains two additional state-
ments outside the current context. For each perfect matching of H ′′, there is a
corresponding perfect matching of H , where the two extra vertices are matched
by the edge between them. Thus, according to theorem 2,
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|det A(H)| �
∣∣det A(H ′′)

∣∣ , (15)

where the equality sign probably does not apply for any of the radicals in the
series.

It is possible to label the vertices of a bipartite graph such that the adja-
cency matrix takes the form

A =
(

O B
BT O

)
, (16)

where O is a zero matrix and B is the “incidence matrix” between the two color
sets (see, e.g., [24,26,32]). If f T = (uT vT ) is an eigenvector of A with eigenvalue
θ , and u and v are the projections of f on the two color sets, then f T = (uT −
vT ) is also an eigenvector of A, but with eigenvalue −θ . An eigenvector of A(H)

or A(H ′′) that sums to zero on each of the orbits of reflection through the σv-
plane have opposite signs on the two color sets, and therefore,

∣∣∣∣∣∣

∏

j

θ j (A2)(A(G))

∣∣∣∣∣∣
=

√|det A(H)| (17)

and
∣∣∣∣∣∣

∏

j

θ j (A2)(A(G ′′))

∣∣∣∣∣∣
= √|det A(H ′′)|. (18)

On insertion of (17) and (18) into (15), we obtain
∣∣∣∣∣∣

∏

j

θ j (A2)(A(G))

∣∣∣∣∣∣
�

∣∣∣∣∣∣

∏

j

θ j (A2)(A(G ′′))

∣∣∣∣∣∣
, (19)

which, according to (10) and (11) means that
∣∣det A(G/X)

∣∣ �
∣∣∣det A(G ′′/X ′′)

∣∣∣ (20)

since, by (13), det A(G/X A1) = det A(G ′′/X ′′
A1). In conjunction with (9), (20) gives

∣∣det A(G/X)
∣∣ �

∣∣∣2 det A(G ′/X ′) − det A(G/X)

∣∣∣ . (21)

Thus det A(G/X) �= 0, since G ′ is the graph of a conjugated cone with nonzero
positive determinant. In addition (21) requires sgn det A(G/X) = sgn det A(G ′/X ′),
so, according to the first paragraph of the previous section, we finally have

θ(n+1)/2(A(G)) > 0 > θ(n+3)/2(A(G)) (22)
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for the series of radicals with a single pentagon at tip. If θ(n+1)/2(A(G)) is a
degenerate eigenvalue, the radical is unstable to Jahn–Teller distortions. In any
event (22) implies the existence of an infinite series of closed-shell anions, real-
ized by putting an electron in the last bonding state of each radical.

7. The threefold symmetric radicals

Will the decomposition of the quotient graphs carried out for the fivefold
symmetric radicals also apply to the series of threefold symmetric radicals with
three pentagons at the tips? There is actually only one additional hurdle, repre-
sented by the double edge occurring in G/X for this series, as shown in figure 8.
Due to this edge, the bipartite subgraphs of G/X and G ′′/X ′′ are isomorphic to
graphs not strictly qualifying for class A; the double edge is equivalent to a
circuit of length 4s + 2 with s = 0, and class A is only defined for s > 0. To
determine whether or not the determinant formula of theorem 2 still holds when
double edges are introduced in class A graphs, we must take a look at the back-
ground for the definition.

In a bipartite graph H with n = ν + ν vertices, color the first ν vertices
red, and the remaining vertices blue. A spanning directed subgraph of H , where
exactly one arc goes out from every red (blue) vertex, and exactly one arc ter-
minates in every blue (red) vertex, is called a red (blue) separation [24], and the
union of one red and one blue separation gives a linear directed subgraph L of
H [33]. Further, a red (blue) separation can be represented as a permutation of
the labels of the blue (red) vertices such that a parity can be assigned to every
factor (perfect matching) K of H . Let k+ and k− denote the numbers of factors
with, respectively, positive and negative parity. Then the determinant of the adja-
cency matrix of H is given by Dewar and Longuet-Higgins [34].

Figure 8. The undirected graph G/X , which is co-spectral to the quotient graph G/X , where the cells
of X are the orbits of the C3 operation on G. As in figure 4, a fraction of the orbits in G and

corresponding vertices in G/X are indicated with numbers.
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Theorem 3.

det A = (−1)ν(k+ − k−)2. (23)

Comparing with theorem 2, it is understood that all factors of a class A
graph have the same parity. Starting with the Coefficients Theorem, it can be
proved that this happens iff the union of edge sets from any two factors forms
an even number of circuits of length 4s (s = 1, 2, . . .) [35].

Now, the bipartite subgraphs of G/X and G ′′/X ′′ for the series of threefold
symmetric radicals are identical to those of the fivefold symmetric series, except
for the double edges. Since at most one of the double edges can be part of any
factor, each factor of a bipartite subgraph belongs to the same class A graph,
and theorem 2 still applies. The decomposition of G/X for the threefold symmet-
ric radicals can therefore be carried out exactly as in the preceding sections, with
(21) as the final result. However, according to point (b) at the end of section 3,
the graph G ′ obtained by removing the outer ring of carbons now belongs to a
conjugated cone with negative determinant. Thus,

θ(n−1)/2(A(G)) > 0 > θ(n+1)/2(A(G)) (24)

for the threefold symmetric radicals, which implies an infinite series of closed-
shell conic cations obtained by removing the single electron in the first anti-
bonding state of each radical.

8. The radicals with five pentagons at the tip

Figure 9, which must be read with the same filter as figure 8, shows the
molecular graph G and the quotient graph G/X A′ for a radical wit five penta-
gons at the tip. These radicals have only one plane of reflection normal to the
paper, and the cells of their equitable partitions are the orbits of the point group
Cs. On these cells, the eigenvectors that transform in accordance with the A′ rep-
resentation are constant, while those of the A′′ representation sum to zero, and
the group has no additional irreducible representations. The decomposition car-
ried out in the preceding sections will not apply here, so we now make a slightly
different approach, which is partly based on continuity of the eigenvalues of nor-
mal matrices. In addition to the previously exposed quotient graphs, each radical
with one or three pentagons at the tip has a quotient graph analogous to that of
9, and this approach will also apply in an alternative derivation of the eigenvalue
bonds obtained for these radicals.

Since the 2-valent vertex lying in the σv-plane of G is mapped into an
end-vertex of G/X A′ , the Coefficients Theorem allows the decomposition of G/X A′
into G ′/X ′

A′ plus a loop and a disjoint set of cycles, as indicated in figure 9, with
pairs of oppositely directed arcs represented by edges. It is seen that G ′/X ′

A′ is the
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Figure 9. The molecular graph G and quotient graph G/X A′ of a Cs symmetric radical with five
pentagons at the tip. Decomposition of G/X A′ in accordance with the Coefficients Theorem is shown

to the right.

quotient graph of the conjugated cone obtained by removing the outer ring of the
radical. According to our previous work, A(G ′) has to satisfy (3), so det A(G ′/X ′

A′),
and thus det A(G/X A′), must be non-zero. Each eigenvector of A′′ type equals zero
on each vertex lying in the σv-plane of G, so their corresponding eigenvalues are
all non-zero, as they are contained in the spectrum of the graph obtained by
removing only the 2-valent of these vertices from G, and this graph also belongs
to a conjugated cone of the type that has to satisfy (3). The point of these con-
siderations is that A(G) is non-singular, i.e. invertible.

We can now go on to find the inverse of A(G), which by appropriate label-
ing of the vertices can be written in the form

A(G) =
(

B V
V T C

)
, (25)

where B = A(G ′) and C is the adjacency matrix of the outer ring of G, connected
to G ′ by V . By exploiting the non-singularity of B and C in the solution of

(
M N
Q R

) (
B V

V T C

)
= I

with the blocks M, N , Q, and R as unknowns, the inverse of A(G) is found to be

A−1(G) =
⎛

⎝
(B − V C−1V T )−1 −(B − V C−1V T )−1V C−1

−(C − V T B−1V )−1V T B−1 (C − V T B−1V )−1

⎞

⎠ . (26)

Since we know that this matrix actually exists, the expansions

(B − V C−1V T )−1 = B−1 + B−1V C−1V T B−1

+ B−1V C−1V T B−1V C−1V T B−1 + · · · (27)
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and

(C − V T B−1V )−1 = C−1 + C−1V T B−1V C−1

+ C−1V T B−1V C−1V T B−1V C−1 + · · · (28)

have to converge at some point. Now we multiply each entry of V and V T in
A(G) with a scaling factor ρ, and let ρ increase continuously from zero. Since
A−1(G) exists, the expansions above converges for ρ = 1, and thus clearly con-
verge for any value of ρ between 0 and 1, so no eigenvalues become equal to
zero when ρ is in this interval. This chain of matrices are Hermitian, and the
eigenvalues of a Hermitian matrix vary continuously with the matrix. This par-
ticular consequence of Weyl’s Perturbation Theorem [36] is in fact true for any
normal matrix [25]. Thus, no eigenvalues pass through zero as ρ increases from
0 to 1, so the number of negative eigenvalues of A(G) equals the number of neg-
ative eigenvalues of B = A(G ′) plus the number of negative eigenvalues of C , the
adjacency matrix of the outer ring. Then we have

sgn det A(G) = sgn det A(G ′) · sgn det C = sgn det A(G ′) (29)

since, as mentioned in section 5, the Coefficients Theorem shows that the deter-
minant of an odd circuit equals 2. From the chemical formula given in section
2 it then follows that det A(G) is positive for all radicals of this series. Thus,
according to point (a) of section 3, the eigenvalue bounds

θ(n+1)/2(A(G)) > 0 > θ(n+3)/2(A(G)) (30)

hold, except for the smallest member of the series. The latter radical consists of
a single carbon ring around a conjugated cone for which we do not know if (3)
applies; our previous analysis was restricted to cones where each edge is part of
a hexagon. However, direct calculation shows the above inequality to hold also
for the first graph of figure 3. As for the series with one pentagon at the tip,
this inequality implies an infinite series of closed-shell conic anions. An impor-
tant difference is that, except for accidental degeneracies, all the eigenvalues of
A(G) are now simple, so the Cs symmetry of the molecular graphs is presumably
preserved in the real radicals. For the two other series we are currently – perhaps
permanently – unable to predict the multiplicity of the highest occupied levels;
we have no evidence that this multiplicity is an invariant of each series, although
direct calculation of a few systems suggests that it may be.

9. Reduced representations and eigenvalue sum rules

Since we now have the critical spectral information about three entire clas-
ses of radicals and their associated anions and cations, it seems worthwhile to
extract some additional chemically relevant facts from the quotient graphs. As in



H. Heiberg-Andersen and A.T. Skjeltorp / Spectra of conic carbon radicals 723

the preceding section, it is implicitly understood that the symmetries and trans-
formation properties refer to the graphs, and that their physical realization as
conic carbon radicals may be prevented by Jahn–Teller distortions. The reduced
representations and sum rules derived in this sections still have immediate for the
anions and cations, and for the interpretation of the spectra of the real radicals.

For the threefold symmetric radicals, we already have the reduced represen-
tations; the number of A1 and A2 states are found by counting vertices in G/X A1
and G/X , and the C3v point group has only three non-equivalent irreducible rep-
resentations, so the reduced representation of a threefold symmetric radical with
r concentric rings reads

Γ = r2 + 3r − 2
2

· A1 + r(r + 1)

2
· A2 + (r2 + 2r − 1) · E . (31)

In the same manner the number of A1 and A2 appearances in the reduced
representation of the fivefold symmetric radicals are found. However, the C5v

group has two non-equivalent two-dimensional irreducible representations, E1
and E2, that cannot be resolved by any quotient graph. As mentioned in the
previous section, for both series there is one additional equitable partition of the
vertices, where the cells are the orbits of the σv elements of the point groups.
However, the spectra of the resulting quotient graphs contain the eigenvalues of
all E states in addition to the A1 states, and thus provide no additional group
theoretical information. For the fivefold symmetric radicals we must therefore
turn to the standard approach of representation theory. For each of the 10 ele-
ments (automorphisms) of the C5v group, the character χi (Γ ) equals the num-
ber of vertices that are unchanged by the operation of the ith element, and the
number of times E1 appears in Γ is given by

n(E1) = 1
10

10∑

i

χi (E1) · χi (Γ ). (32)

Only for the identity operation and reflections through the σv-planes is χi (Γ )

non-zero, so from the character table we get

n(E1) = 1
10

· 2 · n = n/5 = r2 (33)

and the reduced representation of the fivefold symmetric radicals becomes

Γ = r(r + 1)

2
· A1 + r(r − 1)

2
· A2 + r2 · E1 + r2 · E2. (34)

The trace of a matrix equals the sum of its eigenvalues, and each loop of
a quotient graph contribute a “1” on the diagonal of its adjacency matrix. The
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sum of eigenvalues which corresponding eigenvectors are of A1 or A2 type is
thus an invariant for each of the two series;

∑

j

θ j (A1/A2)(A(G))(3) =
∑

j

θ j (A(G/X))(3) =
∑

j

θ j (A(G/X))(3) = 0 (35)

and
∑

j

θ j (A1/A2)(A(G))(1) =
∑

j

θ j (A(G/X))(1) =
∑

j

θ j (A(G/X))(1) = 2, (36)

where the superscripts (1) and (3) refer to the five and threefold symmetric
series, with, respectively, one and three pentagons at the tips. Since the molec-
ular graphs have no loops, these sums, which hold also for the conjugated cones
obtained by removing the outer carbon ring from the radicals, immediately imply

∑

j

θ j (E)(A(G))(3) = 0 (37)

and
∑

j

θ j (E1/E2)(A(G))(1) = −2. (38)

As there are no quotient graphs that single out the E1 or E2 states, we are
unable to refine the sum (38). On the other hand, counting loops in G/X A1 for
the two series gives in conjunction with (35) and (36)

∑

j

θ j (A1)(A(G))(3) = r − 1, (39)

∑

j

θ j (A2)(A(G))(3) = 1 − r, (40)

∑

j

θ j (A1)(A(G))(1) = r + 1, (41)

∑

j

θ j (A2)(A(G))(1) = 1 − r. (42)

In the same manner, the reduced representations and sum rules for the rad-
icals with five pentagons at the tip are easily derived from the quotient graph of
figure 9:

Γ = r2 + 21r + 42
2

· A′ + r2 + 19r + 38
2

· A′′ (43)
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and
∑

j

θ j (A′)(A(G))(5) = 4 + r = −
∑

j

θ j (A′′)(A(G))(5), (44)

where r is defined in connection with the chemical formula in section 2.

10. Summary and outlock

Beneficial features common to the quotient graphs of the five and threefold
symmetric series of radicals, with respectively, one and three pentagons at the tip,
allow determination of the nature of their highest occupied and lowest unoccu-
pied Hückel orbitals by purely graph-theoretical considerations. The radicals of
threefold topological symmetry are found to have a single electron in the first
anti-bonding orbital, each member of the fivefold symmetric series has a vacancy
in the last bonding orbital, and none of the two series contain radicals with
un-bonding orbitals. As far as the Hückel theory applies, the associated threefold
symmetric cations and fivefold symmetric anions are thus stable against Jahn–
Teller distortions and otherwise chemically inert. The derivation outlined here of
the crucial eigenvalue bonds for these two series of radicals depends on our pre-
vious results for conjugated cones, the possibility to split the determinants of the
quotient graphs by means of the Coefficients Theorem, and the associated class
A bipartite subgraphs.

The radicals with five pentagons at the tip have the lowest symmetry of
the three series we have investigated. The decomposition carried out for the two
other series is not possible for these radicals, and the spectral information was
obtained by exploiting the continuity of the eigenvalues of the adjacency matri-
ces, which by the Coefficients Theorem were proved to be non-singular. Like the
series with one pentagon at the tip, each of these radicals has one vacancy in the
last bonding orbital. The approach to the eigenvalue bonds for the radicals with
five pentagons at the tip will apply in an alternative derivation of the eigenvalue
bonds for the three and fivefold symmetric radicals. As the absolute value of an
eigenvalue is restricted by the largest vertex degree [26], the distance between the
Hückel levels decreases with the size of the systems investigated in this work, and
Hund’s rule is likely to set in at some point. Since, except for accidental degen-
eracies, all the eigenvalues of the anions and neutral conjugated cones with five
pentagons at the tip are simple, we expect this to happen first in one of these
series.

We found these series of radicals, cations, and anions sufficiently interesting
that we supplied the reduced representations together with eigenvalue sum rules
derived from the quotient graphs. For curved graphene sheets, the Hückel model is
known to work for the valence states. The nature and ordering of the lower-lying
virtual π -states, on the other hand, will presumably deviate from the predictions
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of this theory. The derived eigenvalue sum rules may help to clarify the limits of
the Hückel model when comparative ab initio results are available.
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